Wednesday, October 26, 2016

Eksponensiële geweegde bewegende gemiddelde filter matlab

Eksponensiële Filter Hierdie bladsy beskryf eksponensiële filter, die eenvoudigste en mees gewilde filter. Dit is deel van die artikel filter wat deel is van 'n Gids tot Fout opsporing en diagnose .. Oorsig, tydkonstante, en analoog gelykstaande Die eenvoudigste filter is die eksponensiële filter. Dit het net een stem parameter (behalwe die voorbeeld interval). Dit vereis dat die berging van slegs een veranderlike - die vorige uitset. Dit is 'n IIR (outoregressiewe) filter - die gevolge van 'n inset verandering verval eksponensieel tot die grense van uitstallings of rekenaar rekenkundige wegsteek nie. In verskeie dissiplines, is die gebruik van hierdie filter ook verwys na as 8220exponential smoothing8221. In sommige dissiplines soos belegging analise, is die eksponensiële filter genoem 'n 8220Exponentially Geweegde Moving Average8221 (EWMA), of net 8220Exponential Moving Average8221 (EMA). Dit misbruik die tradisionele ARMA 8220moving average8221 terminologie van tydreeksanalise, want daar is geen insette geskiedenis wat gebruik word - net die huidige insette. Dit is die diskrete tyd ekwivalent van die 8220first orde lag8221 algemeen gebruik in analoog modellering van kontinue-tyd stelsels. In elektriese stroombane, 'n RC filter (filter met een weerstand en een kapasitor) is 'n eerste-orde lag. Wanneer die klem op die analogie te analoog stroombane, die enkele stem parameter is die 8220time constant8221, gewoonlik geskryf as die kleinletter Griekse letter Tau (). Trouens, die waardes van die diskrete monster tye presies ooreenstem met die ekwivalent deurlopende tydsverloop met dieselfde tyd konstant. Die verhouding tussen die digitale implementering en die tydkonstante word in die onderstaande vergelykings. Eksponensiële filter vergelykings en inisialisering Die eksponensiële filter is 'n geweegde kombinasie van die vorige skatting (uitset) met die nuutste insette data, met die som van die gewigte gelyk aan 1 sodat die uitset ooreenstem met die insette by gestadigde toestande. Na aanleiding van die filter notasie reeds bekendgestel: y (k) ay (k-1) (1-a) x (k) waar x (k) is die rou insette ten tye stap ky (k) is die gefilterde uitset ten tye stap ka is 'n konstante tussen 0 en 1, gewoonlik tussen 0.8 en 0.99. (A-1) of 'n word soms die 8220smoothing constant8221. Vir stelsels met 'n vaste tyd stap T tussen monsters, is die konstante 8220a8221 bereken en gestoor vir die gemak net vir die program ontwikkelaar spesifiseer 'n nuwe waarde van die verlangde tyd konstant. Vir stelsels met monsterneming data op ongereelde tussenposes, moet die eksponensiële funksie hierbo gebruik word met elke keer stap, waar t die tyd sedert die vorige voorbeeld. Die filter uitset is gewoonlik geïnisialiseer die eerste insette te pas. Soos die tydkonstante benaderings 0, 'n gaan na nul, so daar is geen filter 8211 die uitset is gelyk aan die nuwe insette. Soos die tydkonstante kry baie groot, 'n benaderings 1, sodat nuwe insette byna geïgnoreer 8211 baie swaar filter. Die filter vergelyking hierbo kan herrangskik in die volgende voorspeller-corrector ekwivalent: Hierdie vorm maak dit meer duidelik dat die veranderlike skatting (uitset van die filter) word voorspel as onveranderd teenoor die vorige skatting y (k-1) plus 'n regstelling termyn gebaseer op die onverwagte 8220innovation8221 - die verskil tussen die nuwe insette x (k) en die voorspelling y (k-1). Hierdie vorm is ook die gevolg van die afleiding van die eksponensiële filter as 'n eenvoudige spesiale geval van 'n Kalman filter. wat is die optimale oplossing vir 'n skatting probleem met 'n bepaalde stel aannames. Stap reaksie Een manier om te visualiseer die werking van die eksponensiële filter is om sy reaksie verloop van tyd tot 'n stap insette plot. Dit wil sê, wat begin met die filter toevoer en afvoer by 0, is die insetwaarde skielik verander na 1. Die gevolglike waardes word hieronder aangestip: In die bogenoemde plot, is die tyd gedeel deur die filter tydkonstante TLU, sodat jy kan meer maklik voorspel die resultate vir enige tydperk, vir enige waarde van die filter tydkonstante. Na 'n tyd gelyk aan die tydkonstante, die filter uitset styg tot 63,21 van sy finale waarde. Na 'n tyd gelyk aan 2 keer konstantes, die waarde styg tot 86,47 van sy finale waarde. Die uitset na tye gelyk aan 3,4 en 5 keer konstantes is 95,02, 98,17, en 99,33 van die finale waarde, onderskeidelik. Sedert die filter is lineêre, beteken dit dat hierdie persentasies kan gebruik word vir enige grootte van die stapverandering, nie net vir die waarde van 1 wat hier gebruik word. Hoewel die stap reaksie in teorie neem 'n oneindige tyd, uit 'n praktiese oogpunt, dink aan die eksponensiële filter as 98-99 8220done8221 reageer ná 'n tyd gelyk aan 4 tot 5 filter tyd konstantes. Variasies op die eksponensiële filter Daar is 'n variasie van die eksponensiële filter bekend as 'n 8220nonlinear eksponensiële filter8221 Weber, 1980 bedoel om swaar filter geraas binne 'n sekere 8220typical8221 amplitude, maar dan vinniger te reageer op groter veranderinge. Kopiereg 2010 - 2013, Greg Stanley Deel hierdie bladsy: Dokumentasie tsmovavg uitset tsmovavg (tsobj, s, lag) gee terug Die eenvoudige bewegende gemiddeld vir finansiële tydreekse voorwerp, tsobj. lag dui die aantal vorige datapunte gebruik met die huidige data punt by die berekening van die bewegende gemiddelde. uitset tsmovavg (vektor, s, lag, dowwe) gee terug Die eenvoudige bewegende gemiddelde vir 'n vektor. lag dui die aantal vorige datapunte gebruik met die huidige data punt by die berekening van die bewegende gemiddelde. uitset tsmovavg (tsobj, e, timeperiod) gee terug Die eksponensiële geweegde bewegende gemiddelde vir finansiële tydreekse voorwerp, tsobj. Die eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod spesifiseer die tydperk. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n 10-tydperk eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. Eksponensiële Persentasie 2 / (TIMEPER 1) of 2 / (WINDOWSIZE 1). uitset tsmovavg (vektor, e, timeperiod, dowwe) gee terug Die eksponensiële geweegde bewegende gemiddelde vir 'n vektor. Die eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod spesifiseer die tydperk. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n 10-tydperk eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. (2 / (timeperiod 1)). uitset tsmovavg (tsobj, t, numperiod) gee terug Die driehoekige bewegende gemiddelde vir finansiële tydreekse voorwerp, tsobj. Die driehoekige bewegende gemiddelde dubbel glad die data. tsmovavg word bereken dat die eerste eenvoudige bewegende gemiddelde met venster breedte van oordek (numperiod 1) / 2. Dan bereken dit 'n tweede eenvoudige bewegende gemiddelde op die eerste bewegende gemiddelde met dieselfde venster grootte. uitset tsmovavg (vektor, t, numperiod, dowwe) gee terug Die driehoekige bewegende gemiddelde vir 'n vektor. Die driehoekige bewegende gemiddelde dubbel glad die data. tsmovavg word bereken dat die eerste eenvoudige bewegende gemiddelde met venster breedte van oordek (numperiod 1) / 2. Dan bereken dit 'n tweede eenvoudige bewegende gemiddelde op die eerste bewegende gemiddelde met dieselfde venster grootte. uitset tsmovavg (tsobj, w, gewigte) gee terug Die geweegde bewegende gemiddelde vir die finansiële tydreekse voorwerp, tsobj. deur die verskaffing van gewigte vir elke element in die bewegende venster. Die lengte van die gewig vektor bepaal die grootte van die venster. As groter gewig faktore word gebruik vir meer onlangse pryse en kleiner faktore vir vorige pryse, die neiging is meer ontvanklik vir onlangse wysigings. uitset tsmovavg (vektor, w, gewigte, dowwe) gee terug Die geweegde bewegende gemiddelde vir die vektor deur die verskaffing van gewigte vir elke element in die bewegende venster. Die lengte van die gewig vektor bepaal die grootte van die venster. As groter gewig faktore word gebruik vir meer onlangse pryse en kleiner faktore vir vorige pryse, die neiging is meer ontvanklik vir onlangse wysigings. uitset tsmovavg (tsobj, m, numperiod) gee terug Die gemodifiseerde bewegende gemiddelde vir die finansiële tydreekse voorwerp, tsobj. Die aangepaste bewegende gemiddelde is soortgelyk aan die eenvoudige bewegende gemiddelde. Oorweeg die argument numperiod die lag van die eenvoudige bewegende gemiddelde wees. Die eerste gewysigde bewegende gemiddelde bereken word soos 'n eenvoudige bewegende gemiddelde. Daaropvolgende waardes word bereken deur die toevoeging van die nuwe prys en trek die laaste gemiddelde van die gevolglike bedrag. uitset tsmovavg (vektor, m, numperiod, dowwe) gee terug Die gemodifiseerde bewegende gemiddelde vir die vektor. Die aangepaste bewegende gemiddelde is soortgelyk aan die eenvoudige bewegende gemiddelde. Oorweeg die argument numperiod die lag van die eenvoudige bewegende gemiddelde wees. Die eerste gewysigde bewegende gemiddelde bereken word soos 'n eenvoudige bewegende gemiddelde. Daaropvolgende waardes word bereken deur die toevoeging van die nuwe prys en trek die laaste gemiddelde van die gevolglike bedrag. dowwe 8212 dimensie te bedryf saam positiewe heelgetal met waarde 1 of 2 Dimension te bedryf saam, wat as 'n positiewe heelgetal met 'n waarde van 1 of 2. dowwe is 'n opsionele insette argument, en as dit nie gebruik word as 'n inset, die verstek waarde 2 word aanvaar. Die standaard van dowwe 2 dui op 'n ry-georiënteerde matriks, waar elke ry is 'n veranderlike en elke kolom is 'n waarneming. As dowwe 1. die insette is veronderstel om 'n kolomvektor of-kolom-georiënteerde matriks, waar elke kolom is 'n veranderlike en elke ry 'n waarneming wees. e 8212 aanwyser vir eksponensiële bewegende gemiddelde karakter vektor Eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod is die tydperk van die eksponensiële bewegende gemiddelde. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n tydperk van 10 eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. Eksponensiële Persentasie 2 / (TIMEPER 1) of 2 / (WINDOWSIZE 1) timeperiod 8212 Lengte van tyd positiewe getal Kies Jou CountryDocumentation tsmovavg uitset tsmovavg (tsobj, s, lag) gee terug Die eenvoudige bewegende gemiddeld vir finansiële tydreekse voorwerp, tsobj. lag dui die aantal vorige datapunte gebruik met die huidige data punt by die berekening van die bewegende gemiddelde. uitset tsmovavg (vektor, s, lag, dowwe) gee terug Die eenvoudige bewegende gemiddelde vir 'n vektor. lag dui die aantal vorige datapunte gebruik met die huidige data punt by die berekening van die bewegende gemiddelde. uitset tsmovavg (tsobj, e, timeperiod) gee terug Die eksponensiële geweegde bewegende gemiddelde vir finansiële tydreekse voorwerp, tsobj. Die eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod spesifiseer die tydperk. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n 10-tydperk eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. Eksponensiële Persentasie 2 / (TIMEPER 1) of 2 / (WINDOWSIZE 1). uitset tsmovavg (vektor, e, timeperiod, dowwe) gee terug Die eksponensiële geweegde bewegende gemiddelde vir 'n vektor. Die eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod spesifiseer die tydperk. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n 10-tydperk eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. (2 / (timeperiod 1)). uitset tsmovavg (tsobj, t, numperiod) gee terug Die driehoekige bewegende gemiddelde vir finansiële tydreekse voorwerp, tsobj. Die driehoekige bewegende gemiddelde dubbel glad die data. tsmovavg word bereken dat die eerste eenvoudige bewegende gemiddelde met venster breedte van oordek (numperiod 1) / 2. Dan bereken dit 'n tweede eenvoudige bewegende gemiddelde op die eerste bewegende gemiddelde met dieselfde venster grootte. uitset tsmovavg (vektor, t, numperiod, dowwe) gee terug Die driehoekige bewegende gemiddelde vir 'n vektor. Die driehoekige bewegende gemiddelde dubbel glad die data. tsmovavg word bereken dat die eerste eenvoudige bewegende gemiddelde met venster breedte van oordek (numperiod 1) / 2. Dan bereken dit 'n tweede eenvoudige bewegende gemiddelde op die eerste bewegende gemiddelde met dieselfde venster grootte. uitset tsmovavg (tsobj, w, gewigte) gee terug Die geweegde bewegende gemiddelde vir die finansiële tydreekse voorwerp, tsobj. deur die verskaffing van gewigte vir elke element in die bewegende venster. Die lengte van die gewig vektor bepaal die grootte van die venster. As groter gewig faktore word gebruik vir meer onlangse pryse en kleiner faktore vir vorige pryse, die neiging is meer ontvanklik vir onlangse wysigings. uitset tsmovavg (vektor, w, gewigte, dowwe) gee terug Die geweegde bewegende gemiddelde vir die vektor deur die verskaffing van gewigte vir elke element in die bewegende venster. Die lengte van die gewig vektor bepaal die grootte van die venster. As groter gewig faktore word gebruik vir meer onlangse pryse en kleiner faktore vir vorige pryse, die neiging is meer ontvanklik vir onlangse wysigings. uitset tsmovavg (tsobj, m, numperiod) gee terug Die gemodifiseerde bewegende gemiddelde vir die finansiële tydreekse voorwerp, tsobj. Die aangepaste bewegende gemiddelde is soortgelyk aan die eenvoudige bewegende gemiddelde. Oorweeg die argument numperiod die lag van die eenvoudige bewegende gemiddelde wees. Die eerste gewysigde bewegende gemiddelde bereken word soos 'n eenvoudige bewegende gemiddelde. Daaropvolgende waardes word bereken deur die toevoeging van die nuwe prys en trek die laaste gemiddelde van die gevolglike bedrag. uitset tsmovavg (vektor, m, numperiod, dowwe) gee terug Die gemodifiseerde bewegende gemiddelde vir die vektor. Die aangepaste bewegende gemiddelde is soortgelyk aan die eenvoudige bewegende gemiddelde. Oorweeg die argument numperiod die lag van die eenvoudige bewegende gemiddelde wees. Die eerste gewysigde bewegende gemiddelde bereken word soos 'n eenvoudige bewegende gemiddelde. Daaropvolgende waardes word bereken deur die toevoeging van die nuwe prys en trek die laaste gemiddelde van die gevolglike bedrag. dowwe 8212 dimensie te bedryf saam positiewe heelgetal met waarde 1 of 2 Dimension te bedryf saam, wat as 'n positiewe heelgetal met 'n waarde van 1 of 2. dowwe is 'n opsionele insette argument, en as dit nie gebruik word as 'n inset, die verstek waarde 2 word aanvaar. Die standaard van dowwe 2 dui op 'n ry-georiënteerde matriks, waar elke ry is 'n veranderlike en elke kolom is 'n waarneming. As dowwe 1. die insette is veronderstel om 'n kolomvektor of-kolom-georiënteerde matriks, waar elke kolom is 'n veranderlike en elke ry 'n waarneming wees. e 8212 aanwyser vir eksponensiële bewegende gemiddelde karakter vektor Eksponensiële bewegende gemiddelde is 'n geweegde bewegende gemiddelde, waar timeperiod is die tydperk van die eksponensiële bewegende gemiddelde. Eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Byvoorbeeld, 'n tydperk van 10 eksponensiële bewegende gemiddelde gewigte die mees onlangse prys deur 18.18. Eksponensiële Persentasie 2 / (TIMEPER 1) of 2 / (WINDOWSIZE 1) timeperiod 8212 Lengte van tyd positiewe getal Kies Jou CountryDocumentation Hierdie voorbeeld wys hoe om te gebruik bewegende gemiddelde filters en hermonstering om die effek van periodieke komponente van die tyd van die dag op te isoleer uurlikse temperatuurlesings, asook verwyder ongewenste lyn geraas van 'n oop-lus spanning meting. Die voorbeeld toon ook hoe om die vlakke van 'n kloksein glad terwyl die behoud van die kante deur die gebruik van 'n mediaan filter. Die voorbeeld toon ook hoe om 'n Hampel filter gebruik om groot uitskieters verwyder. Motivering Smoothing is hoe ons ontdek belangrik patrone in ons data, terwyl die verlaat uit dinge wat onbelangrik (bv geraas) is. Ons gebruik filter om hierdie smoothing voer. Die doel van smoothing is om stadige veranderinge in waarde te produseer sodat sy makliker om tendense in ons data te sien. Soms wanneer jy insette data te ondersoek wat jy kan wens om die data te stryk ten einde 'n tendens in die sein te sien. In ons voorbeeld het ons 'n stel van temperatuurlesings in Celsius geneem elke uur by die Logan-lughawe vir die hele maand van Januarie 2011. Let daarop dat ons visueel die effek wat die tyd van die dag het aan die temperatuurlesings kan sien. As jy in die daaglikse temperatuur variasie oor die maand net belangstel, die uurlikse skommelinge net bydra geraas, wat die daaglikse variasies moeilik om te onderskei kan maak. Om die effek van die tyd van die dag verwyder, sou ons nou graag ons data glad met behulp van 'n bewegende gemiddelde filter. 'N bewegende gemiddelde filter in sy eenvoudigste vorm, 'n bewegende gemiddelde filter van lengte N neem die gemiddelde van elke N agtereenvolgende monsters van die golfvorm. Om 'n bewegende gemiddelde filter aan elke datapunt toepassing, bou ons koëffisiënte van ons filter sodat elke punt ewe is geweeg en dra 24/01 tot die totale gemiddelde. Dit gee ons die gemiddelde temperatuur oor elke tydperk van 24 uur. Filter Vertraging Let daarop dat die gefilterde uitset vertraag met sowat twaalf ure. Dit is te danke aan die feit dat ons bewegende gemiddelde filter het 'n vertraging. Enige simmetriese filter van lengte N sal 'n vertraging van (N-1) / 2 monsters het. Ons kan rekening vir die vertraging met die hand. Uittreksels van Gemiddeld Verskille Alternatiewelik, kan ons ook die bewegende gemiddelde filter gebruik om 'n beter skatting van hoe die tyd van die dag beïnvloed die algehele temperatuur verkry. Om dit te doen, in die eerste, trek die stryk data van die uurlikse temperatuur metings. Dan segment die differenced data in dae en neem die gemiddelde oor die hele 31 dae in die maand. Uittreksels van Peak Envelope Soms het ons ook graag 'n vlot wisselende skatting van hoe die hoogte - en laagtepunte van ons temperatuur sein verander daagliks. Om dit te doen, kan ons die koevert funksie gebruik om die uiterste hoogtepunte en laagtepunte bespeur oor 'n subset van die tydperk van 24 uur aan te sluit. In hierdie voorbeeld, verseker ons daar ten minste 16 uur tussen elke uiterste hoë en uiterste lae. Ons kan ook 'n gevoel van hoe die hoogte - en laagtepunte is trending deur die gemiddeld tussen die twee uiterstes kry. Geweegde Moving Gemiddelde filters Ander vorme van bewegende gemiddelde filters doen elke monster nie ewe gewig. Nog 'n algemene filter volg die binomiale uitbreiding van (1 / 2,1 / 2) n Hierdie tipe filter by benadering 'n normale kurwe vir groot waardes van n. Dit is nuttig vir die filter van hoë frekwensie geraas vir klein N. Om die koëffisiënte vind vir die binomiale filter, oprollen 1/2 1/2 met homself en dan iteratief oprollen die uitset met 1/2 1/2 'n voorgeskrewe aantal kere. In hierdie voorbeeld gebruik vyf totale iterasies. Nog 'n filter ietwat soortgelyk aan die Gaussiese uitbreiding filter is die eksponensiële bewegende gemiddelde filter. Hierdie tipe geweeg bewegende gemiddelde filter is maklik om op te rig en nie 'n groot venster grootte vereis. Jy pas 'n eksponensieel geweeg bewegende gemiddelde filter deur 'n alfa parameter tussen nul en een. 'N Hoër waarde van alfa sal minder glad nie. Zoom in op die lesings vir een dag. Kies jou CountryWeighted Bewegende Gemiddeldes: Die Basics Oor die jare, het tegnici twee probleme met die eenvoudige bewegende gemiddelde gevind. Die eerste probleem lê in die tyd van die bewegende gemiddelde (MA). Die meeste tegniese ontleders glo dat die prys aksie. die opening of sluiting voorraad prys, is nie genoeg om op te hang vir goed voorspel koop of te verkoop seine van die MA crossover aksie. Om hierdie probleem op te los, het ontleders nou meer gewig toeken aan die mees onlangse prys data deur gebruik te maak van die eksponensieel stryk bewegende gemiddelde (EMA). (Meer inligting in die ondersoek van die eksponensieel geweeg bewegende gemiddelde.) 'N voorbeeld Byvoorbeeld, met behulp van 'n 10-dag MA, sou 'n ontleder die sluitingsprys van die 10de dag te neem en vermeerder hierdie getal deur 10, die negende dag van nege, die agtste van dag tot agt en so aan tot die eerste van die MA. Sodra die totale bepaal, sou die ontleder dan verdeel die aantal deur die byvoeging van die vermenigvuldigers. As jy die vermenigvuldigers van die 10-dag MA voorbeeld te voeg, die getal is 55. Hierdie aanwyser is bekend as die lineêr geweeg bewegende gemiddelde. (Vir verwante leesstof, check Eenvoudige bewegende gemiddeldes Maak Trends uitstaan.) Baie tegnici is ferm gelowiges in die eksponensieel stryk bewegende gemiddelde (EMA). Hierdie aanwyser is verduidelik in so baie verskillende maniere waarop dit verwar studente en beleggers sowel. Miskien is die beste verduideliking kom van John J. Murphy tegniese ontleding van die finansiële markte, (uitgegee deur die New York Instituut van Finansies, 1999): Die eksponensieel stryk bewegende gemiddelde adresse beide van die probleme wat verband hou met die eenvoudige bewegende gemiddelde. Eerstens, die eksponensieel stryk gemiddelde ken 'n groter gewig aan die meer onlangse data. Daarom is dit 'n geweegde bewegende gemiddelde. Maar terwyl dit ken mindere belang vir verlede prys data, beteken dit sluit in die berekening al die data in die lewe van die instrument. Daarbenewens het die gebruiker in staat is om die gewig te pas by mindere of meerdere gewig te gee aan die mees onlangse dae prys, wat by 'n persentasie van die vorige dae waarde. Die som van beide persentasie waardes voeg tot 100. Byvoorbeeld, die laaste dae die prys kan 'n gewig van 10 (0,10), wat by die vorige dae gewig van 90 (0,90) opgedra. Dit gee die laaste dag 10 van die totale gewig. Dit sou die ekwivalent van 'n 20-dag gemiddeld deur die laaste dae die prys 'n kleiner waarde van 5 (0,05) wees. Figuur 1: eksponensieel stryk bewegende gemiddelde Bogenoemde grafiek toon die Nasdaq saamgestelde indeks van die eerste week in Augustus 2000 tot 1 Junie 2001 As jy duidelik kan sien, die EMO, wat in hierdie geval is die gebruik van die sluitingsprys data oor 'n tydperk van nege dae, het definitiewe verkoop seine op die 8 September (gekenmerk deur 'n swart afpyltjie). Dit was die dag toe die indeks het onder die vlak 4000. Die tweede swart pyl toon 'n ander af been wat tegnici eintlik verwag het nie. Die Nasdaq kon genoeg volume en belangstelling van die kleinhandel beleggers na die 3000 merk breek nie genereer. Dit dan duif weer af na onder uit by 1619,58 op April 4. Die uptrend van 12 April is gekenmerk deur 'n pyl. Hier is die indeks gesluit 1,961.46, en tegnici begin institusionele fondsbestuurders begin om af te haal 'n paar winskopies soos Cisco, Microsoft en 'n paar van die energie-verwante kwessies te sien. (Lees ons verwante artikels: Moving Gemiddelde Koeverte:. Verfyning 'n gewilde Trading Tool en bewegende gemiddelde Bounce) 'n Persoon wat handel dryf afgeleides, kommoditeite, effekte, aandele of geldeenhede met 'n hoër-as-gemiddelde risiko in ruil vir. quotHINTquot is 'n akroniem wat staan ​​vir vir quothigh inkomste nie taxes. quot Dit is van toepassing op 'n hoë-verdieners wat verhoed dat die betaling federale inkomste. 'N Mark outeur wat koop en verkoop baie kort termyn korporatiewe effekte genoem kommersiële papier. 'N papier handelaar is tipies. Die onbeperkte koop en verkoop van goedere en dienste tussen lande sonder die oplegging van beperkings soos.


No comments:

Post a Comment