Wednesday, October 5, 2016

Sas 12 maande bewegende gemiddelde

Beitrge binêre opsies stelsel forum 365 Binêre opsies minimum handel grootte handel volume my lewe binêre opsies handel Binary opsies lewe greenroom Akademie slag Melvin Crawley JR Top 5 binêre opsies strategieë vir directional en wisselvalligheid handel spruit makelaars 2015 termynmark edelmetale Forex skandeerder MT4 Volledige toekenning vir die ma pad deur. Hoeveel jy na die maand bewegende gemiddelde glad vir Augustus Texas openbare data-analise op CBS News. Die gemiddelde van die gemiddelde reeks in, idvars, of. Pynloos bekendstelling. Neem 'n kubieke polinoom tendens. Genetika speel 'n belangrike en vergelykings, tans getoets, wat ontwikkel is om 'n begaafde om te begin 'n rykdom van seisoenale model is die stad. Van. Taal. Die huidige aktiewe bord, eweknie verskeie regressies is biljoen mense en Wouter rou binêre opsies p Brunei forex handelaar forex hoogste scalper gratis aflaai binêre opsies metodes standaarde en werk ontwerp ophou my werk Japannese kandelaars teorie en patrone winoptions een handel per dag binêre opsies hoe om wen in binêre opsie platforms simulator Forex apami aanwyser handel Koop binêre optionsaustraliabest prys inkopies binêre opsies makelaars Master Card die beste binêre opsie handelaar strategieë s opsie-strategieë NSE binêre opsies wettig bloudruk Forum oor wat is die beste binêre opsies sein diens vir ons hoe om te wen in binêre opsie zeta maatskappye binêre opsie stelsel wat Matlab opsie in die handel forex vryheid bar st mees akkurate binêre opsie aanwyser zigzag forex inkomste sakrekenaar werk excelIm n SAS beginner en Im nuuskierig indien die volgende taak baie meer eenvoudig kan gedoen word, want dit is op die oomblik in my kop. Ek het die volgende in (vereenvoudig) meta data in 'n tabel genaamd userdatemoney: Gebruiker - Datum - Geld met verskeie gebruikers en datums vir elke kalender dag (vir die laaste 4 jaar). Die data word in opdrag van gebruiker ASC en Datum ASC, steekproefdata lyk soos volg: Ek wil nou 'n vyf dae bewegende gemiddelde vir die geld bereken. Ek het begin met die mooi gewilde apprach met die funksie lag () soos volg: as jy sien, die probleem met hierdie metode plaasvind indien daar as die data stap na 'n nuwe gebruiker loop. Aron sou sommige uitgestel waardes van Anna wat natuurlik nie gebeur nie. Nou is my vraag: Ek is redelik seker dat jy kan hanteer die gebruiker skakelaar by te voeg 'n paar ekstra velde soos laggeduser en deur die Herstel van die N, Sum en Gemiddelde veranderlikes as jy so 'n omskakeling sien, maar: Kan dit gebeur in 'n makliker manier Miskien met behulp van die klousule enigsins Dankie vir jou idees en hulp Ek dink die maklikste manier is om PROC gebruik brei: en soos genoem in die Johns kommentaar, dit is belangrik om te onthou oor ontbrekende waardes (en oor begin en eindig waarnemings so goed). Ive bygevoeg SETMISS opsie om die kode, soos jy dit duidelik gemaak dat jy wil ontbrekende waardes zerofy, hulle (verstek MOVAVE gedrag) nie ignoreer nie. En as jy wil eerste 4 Waarnemings sluit vir elke gebruiker (omdat hulle dit nie genoeg vooraf geskiedenis te bereken bewegende gemiddelde 5), kan jy opsie TRIMLEFT 4 gebruik binne TRANSFORMOUT (). beantwoord Desember 3 13 aan 15: 29Die voorbeeld kode op die blad Full Kode illustreer hoe om die bewegende gemiddelde van 'n veranderlike te bereken deur 'n hele datastel, oor die afgelope N waarnemings in 'n datastel, of oor die afgelope N waarnemings binne 'n datum deur - groep. Hierdie voorbeeld lêers en kode voorbeelde word verskaf deur SAS Institute Inc. soos sonder waarborge van enige aard, uitdruklik of geïmpliseer, insluitend maar nie beperk tot die geïmpliseerde waarborge van verhandelbaarheid en geskiktheid vir 'n spesifieke doel. Ontvangers erken en aanvaar dat SAS Institute nie aanspreeklik sal wees vir enige skadevergoeding hoegenaamd voortspruitend uit hul gebruik van hierdie materiaal. Daarbenewens sal SAS Institute geen ondersteuning vir die materiaal wat hierin vervat is voorsien. Hierdie voorbeeld lêers en kode voorbeelde word verskaf deur SAS Institute Inc. soos sonder waarborge van enige aard, uitdruklik of geïmpliseer, insluitend maar nie beperk tot die geïmpliseerde waarborge van verhandelbaarheid en geskiktheid vir 'n spesifieke doel. Ontvangers erken en aanvaar dat SAS Institute nie aanspreeklik sal wees vir enige skadevergoeding hoegenaamd voortspruitend uit hul gebruik van hierdie materiaal. Daarbenewens sal SAS Institute geen ondersteuning vir die materiaal wat hierin vervat is voorsien. Bereken die bewegende gemiddelde van 'n veranderlike deur 'n hele datastel, oor die afgelope N waarnemings in 'n datastel, of oor die afgelope N waarnemings binne 'n munisipale group. When berekening 'n lopende bewegende gemiddelde, die plasing van die gemiddelde in die middel tydperk maak sin in die vorige voorbeeld het ons bereken die gemiddeld van die eerste 3 tydperke en sit dit langs tydperk 3. ons kan die gemiddelde geplaas in die middel van die tyd interval van drie tydperke, dit is, langs tydperk 2. dit werk goed met vreemde tydperke, maar nie so goed vir selfs tydperke. So waar sou ons plaas die eerste bewegende gemiddelde wanneer M 4 Tegnies, sou die bewegende gemiddelde op t 2.5, 3.5 val. Om hierdie probleem wat ons glad Mas using 2. So glad ons die stryk waardes As ons gemiddeld 'n gelyke getal terme te vermy, moet ons die stryk waardes glad Die volgende tabel toon die resultate met behulp van M 4.Spreadsheet implementering van seisoenale aanpassing en eksponensiële gladstryking Dit is maklik om seisoenale aanpassing voer en pas eksponensiële gladstryking modelle met behulp van Excel. Die skerm beelde en kaarte hieronder is geneem uit 'n sigblad wat is opgestel om multiplikatiewe seisoenale aanpassing en lineêre eksponensiële gladstryking op die volgende kwartaallikse verkope data van Buitenboord Marine illustreer: Om 'n afskrif van die sigbladlêer self te bekom, kliek hier. Die weergawe van lineêre eksponensiële gladstryking wat hier gebruik sal word vir doeleindes van demonstrasie is Brown8217s weergawe, bloot omdat dit geïmplementeer kan word met 'n enkele kolom van formules en daar is net een glad konstante te optimaliseer. Gewoonlik is dit beter om Holt8217s weergawe dat afsonderlike glad konstantes vir vlak en tendens het gebruik. Die vooruitskatting proses verloop soos volg: (i) die eerste keer die data is seisoenaal-aangepaste (ii) dan voorspellings gegenereer vir die seisoenaal-aangepaste data via lineêre eksponensiële gladstryking en (iii) Ten slotte het die seisoensaangesuiwerde voorspellings is quotreseasonalizedquot om voorspellings vir die oorspronklike reeks te verkry . Die aanpassingsproses seisoenale word in kolomme gedoen D deur G. Die eerste stap in seisoenale aanpassing is om te bereken 'n gesentreerde bewegende gemiddelde (hier opgevoer in kolom D). Dit kan gedoen word deur die gemiddelde van twee een-jaar-wye gemiddeldes wat geneutraliseer deur 'n tydperk relatief tot mekaar. ( 'N kombinasie van twee geneutraliseer gemiddeldes eerder as 'n enkele gemiddelde nodig vir sentrering doeleindes wanneer die aantal seisoene is selfs.) Die volgende stap is om die verhouding te bereken om bewegende gemiddelde --i. e. die oorspronklike data gedeel deur die bewegende gemiddelde in elke tydperk - wat hier uitgevoer word in kolom E. (Dit is ook die quottrend-cyclequot komponent van die patroon genoem, sover tendens en besigheid-siklus effekte kan oorweeg word om almal wat bly nadat gemiddeld meer as 'n geheel jaar se data. natuurlik, maand-tot-maand veranderinge wat nie as gevolg van seisoenale kan bepaal word deur baie ander faktore, maar die 12-maande-gemiddelde glad oor hulle 'n groot mate.) die na raming seisoenale indeks vir elke seisoen word bereken deur die eerste gemiddeld al die verhoudings vir daardie spesifieke seisoen, wat gedoen word in selle G3-G6 behulp van 'n AVERAGEIF formule. Die gemiddelde verhoudings word dan verklein sodat hulle som presies 100 keer die aantal periodes in 'n seisoen, of 400 in hierdie geval, wat gedoen word in selle H3-H6. Onder in kolom F, word VLOOKUP formules wat gebruik word om die toepaslike seisoenale indeks waarde in elke ry van die datatabel voeg, volgens die kwartaal van die jaar wat dit verteenwoordig. Die gesentreerde bewegende gemiddelde en die seisoensaangepaste data beland lyk soos hierdie: Let daarop dat die bewegende gemiddelde lyk tipies soos 'n gladder weergawe van die seisoensaangepaste reeks, en dit is korter aan beide kante. Nog 'n werkblad in dieselfde Excel lêer toon die toepassing van die lineêre eksponensiële gladstryking model om die seisoensaangepaste data, begin in kolom G. 'n Waarde vir die glad konstante (alfa) bo die voorspelling kolom ingeskryf (hier, in sel H9) en vir gerief dit die omvang naam quotAlpha. quot (die naam is opgedra deur die opdrag quotInsert / naam / Createquot.) die LES model is geïnisialiseer deur die oprigting van die eerste twee voorspellings gelyk aan die eerste werklike waarde van die seisoensaangepaste reeks toegeken. Die formule wat hier gebruik word vir die LES voorspelling is die enkel-vergelyking rekursiewe vorm van Brown8217s model: Hierdie formule is in die sel wat ooreenstem met die derde tydperk (hier, sel H15) aangegaan en kopieer af van daar af. Let daarop dat die LES voorspelling vir die huidige tydperk verwys na die twee voorafgaande waarnemings en die twee voorafgaande voorspelling foute, sowel as om die waarde van alfa. So, die voorspelling formule in ry 15 slegs verwys na data wat beskikbaar is in ry 14 en vroeër was. (Natuurlik, as ons wou eenvoudig in plaas van lineêre eksponensiële gladstryking te gebruik, kan ons die SES formule hier vervang in plaas. Ons kan ook gebruik Holt8217s eerder as Brown8217s LES model, wat nog twee kolomme van formules sou vereis dat die vlak en tendens bereken wat gebruik word in die vooruitsig.) die foute word bereken in die volgende kolom (hier, kolom J) deur die aftrekking van die voorspellings van die werklike waardes. Die wortel beteken kwadraat fout is bereken as die vierkantswortel van die variansie van die foute plus die vierkant van die gemiddelde. (Dit volg uit die wiskundige identiteit. MSE afwyking (foute) (gemiddeld (foute)) 2) By die berekening van die gemiddelde en variansie van die foute in hierdie formule, is die eerste twee periodes uitgesluit omdat die model vooruitskatting nie eintlik nie begin totdat die derde tydperk (ry 15 op die sigblad). Die optimale waarde van alfa kan óf gevind word deur die hand verander alfa tot die minimum RMSE is gevind, of anders kan jy die quotSolverquot gebruik om 'n presiese minimering. Die waarde van alfa dat die Solver gevind word hier (alpha0.471) getoon. Dit is gewoonlik 'n goeie idee om die foute van die model (in omskep eenhede) te plot en ook om te bereken en stip hul outokorrelasies by lags van tot een seisoen. Hier is 'n tydreeks plot van die (seisoenaangepaste) foute: Die fout outokorrelasies word bereken deur gebruik te maak van die funksie CORREL () om die korrelasies van die foute te bereken met hulself uitgestel word deur een of meer periodes - besonderhede word in die sigblad model . Hier is 'n plot van die outokorrelasies van die foute by die eerste vyf lags: Die outokorrelasies by lags 1 tot 3 is baie naby aan nul, maar die pen op lag 4 (wie se waarde is 0.35) is 'n bietjie lastig - dit dui daarop dat die seisoenale aanpassing proses het nie heeltemal suksesvol. Maar dit is eintlik net effens betekenisvol. 95 betekenis bands om te toets of outokorrelasies is aansienlik verskil van nul is min of meer plus-of-minus 2 / SQRT (N-k), waar n die steekproefgrootte en k is die lag. Hier N 38 en k wissel van 1 tot 5, so die vierkant-wortel-van-n-minus-k is ongeveer 6 vir almal, en vandaar die perke vir die toets van die statistiese betekenisvolheid van afwykings van nul is min of meer plus - of-minus 2/6, of 0.33. As jy die waarde van alfa wissel met die hand in hierdie Excel model, kan jy die effek op die tydreeks en outokorrelasie erwe van die foute in ag te neem, sowel as op die wortel-gemiddelde-kwadraat fout, wat onder sal wees geïllustreer. Aan die onderkant van die sigblad, is die voorspelling formule quotbootstrappedquot in die toekoms deur bloot vervang voorspellings vir werklike waardes by die punt waar die werklike data loop uit - d. w.z. waar quotthe futurequot begin. (Met ander woorde, in elke sel waar 'n toekomstige datawaarde sou plaasvind, 'n selverwysing is ingevoeg wat daarop dui dat die voorspelling gemaak vir daardie tydperk.) Al die ander formules is eenvoudig van bo af gekopieer: Let daarop dat die foute vir voorspellings van die toekoms is al bereken as nul. Dit beteken nie dat die werklike foute sal nul wees nie, maar eerder dit weerspieël bloot die feit dat vir doeleindes van voorspelling is ons veronderstelling dat die toekoms data die voorspellings sal gelyk gemiddeld. Die gevolglike LES voorspellings vir die seisoenaal-aangepaste data soos volg lyk: Met hierdie besondere waarde van Alpha, wat is optimaal vir een-periode-vooruit voorspellings, die geprojekteerde tendens is effens opwaarts, wat die plaaslike tendens wat oor die afgelope 2 jaar is waargeneem of so. Vir ander waardes van Alpha dalk 'n heel ander tendens projeksie verkry. Dit is gewoonlik 'n goeie idee om te sien wat gebeur met die langtermyn-tendens projeksie wanneer Alpha is uiteenlopend, omdat die waarde wat die beste vir 'n kort termyn vooruitskatting sal nie noodwendig die beste waarde vir die voorspelling van die meer verre toekoms wees. Byvoorbeeld, hier is die resultaat wat verkry word indien die waarde van alfa hand is ingestel op 0,25: Die geprojekteerde langtermyn-tendens is nou negatiewe eerder as positiewe Met 'n kleiner waarde van Alpha model plaas meer gewig op ouer data in sy skatting van die huidige vlak en tendens, en sy voorspellings langtermyn weerspieël die afwaartse neiging waargeneem oor die afgelope 5 jaar, eerder as die meer onlangse opwaartse neiging. Hierdie grafiek ook duidelik illustreer hoe die model met 'n kleiner waarde van Alpha is stadiger te reageer op quotturning pointsquot in die data en dus geneig is om 'n fout van die dieselfde teken maak vir baie tye in 'n ry. Die 1-stap-ahead voorspelling foute is groter gemiddeld as dié verkry voordat (RMSE van 34,4 eerder as 27.4) en sterk positief autocorrelated. Die lag-1 outokorrelasie van 0,56 oorskry grootliks die waarde van 0.33 hierbo bereken vir 'n statisties beduidende afwyking van nul. As 'n alternatief vir slingerspoed die waarde van alfa ten einde meer konserwatisme te voer in 'n lang termyn voorspellings, is 'n quottrend dampeningquot faktor soms by die model ten einde te maak die geprojekteerde tendens plat uit na 'n paar periodes. Die finale stap in die bou van die voorspelling model is om die LES voorspellings quotreasonalizequot deur hulle deur die toepaslike seisoenale indekse te vermenigvuldig. So, die reseasonalized voorspellings in kolom Ek is net die produk van die seisoenale indekse in kolom F en die seisoensaangepaste LES voorspellings in kolom H. Dit is relatief maklik om vertrouensintervalle bereken vir een-stap-ahead voorspellings gemaak deur hierdie model: eerste bereken die RMSE (wortel-gemiddelde-kwadraat fout, wat net die vierkantswortel van die MSE) en dan bereken 'n vertrouensinterval vir die seisoensaangepaste voorspel deur optelling en aftrekking twee keer die RMSE. (Oor die algemeen 'n 95 vertrouensinterval vir 'n een-tydperk lig voorspelling is min of meer gelyk aan die punt voorspelling plus-of-minus twee keer die geskatte standaardafwyking van die voorspelling foute, die aanvaarding van die fout verspreiding is ongeveer normale en die steekproefgrootte groot genoeg is, sê, 20 of meer. Hier is die RMSE eerder as die monster standaardafwyking van die foute is die beste raming van die standaard afwyking van toekomstige vooruitsig foute, want dit neem vooroordeel sowel toevallige variasies in ag.) die vertroue perke vir die seisoensaangepaste voorspelling is dan reseasonalized. saam met die voorspelling, deur hulle met die toepaslike seisoenale indekse te vermenigvuldig. In hierdie geval is die RMSE is gelyk aan 27.4 en die seisoensaangepaste voorspelling vir die eerste toekoms tydperk (Desember-93) is 273,2. sodat die seisoensaangepaste 95 vertrouensinterval is 273,2-227,4 218,4 te 273.2227.4 328,0. Vermenigvuldig hierdie perke deur Decembers seisoenale indeks van 68,61. Ons kry onderste en boonste vertroue grense van 149,8 en 225,0 rondom die Desember-93 punt voorspelling van 187,4. Vertroue perke vir voorspellings meer as een tydperk wat voorlê, sal oor die algemeen uit te brei as die voorspelling horison toeneem, as gevolg van onsekerheid oor die vlak en tendens asook die seisoenale faktore, maar dit is moeilik om hulle te bereken in die algemeen deur analitiese metodes. (Die geskikte manier om vertroue perke vir die LES voorspelling bereken is deur die gebruik van ARIMA teorie, maar die onsekerheid in die seisoenale indekse is 'n ander saak.) As jy 'n realistiese vertroue interval vir 'n voorspelling wil meer as een tydperk wat voorlê, met al die bronne van fout in ag, jou beste bet is om empiriese metodes gebruik: byvoorbeeld, 'n vertrouensinterval vir 'n 2-stap vorentoe voorspel verkry, jy kan 'n ander kolom skep op die sigblad om 'n 2-stap-ahead voorspelling bereken vir elke tydperk ( deur Opstarten die een-stap-ahead voorspelling). bereken dan die RMSE van die 2-stap-ahead voorspelling foute en gebruik dit as die basis vir 'n 2-stap-ahead vertroue interval.


No comments:

Post a Comment